​​July 2021, Vol. 6, No. 7, pp. 101-104. 

​​On Orthogonality Conditions for the Range and Kernel of Generalized Derivations

W. L. Otae¹, N. B. Okelo¹,*, M. B. Nzimbi², O. Ongati¹
¹Department of Pure and Applied Mathematics, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo-Kenya
²Department of Mathematics, University of Nairobi-Kenya.

​​*Corresponding author’s e-mail:bnyaare@yahoo.com

Abstract

In the present work, authors reported characterization of orthogonality conditions of the range and the kernel of generalized derivations whose implementing operators are hyponormal in normed spaces. We have shown that if A is a subnormal operator on H with a cyclic vector and if T is abounded linear operator on H which commutes with A and A* then T is hyponormal. Moreover, the range and the kernel of generalized derivations are orthogonal when the inducing operators are from the norm ideal.

Keywords: Orthogonality; Derivations; Range; Kernel.

References

  1. Abatzoglou TJ.  Norm derivatives on spaces of operators. Math. Ann. 1979;239: 129-35.
  2. Anderson JH. On normal derivations. Proc. Amer. Math. Soc. 1973;38:135-40.
  3. Douglas RG.  On the operator equation  and related topics. Acta Sci. Math. (Szeged) 1969;30:19-32.
  4. Duggal BP. A remark on normal derivations, Proc. Amer. Math. Soc. 1998; 126:2047-52.
  5. Duggal BP. Range-kernel orthogonality of derivations. Linear Algebra Appl. 2000;304:103-8.
  6. James RC. Orthogonality and linear functionals in normed linear spaces. Trans. Amer. Math. Soc. 1947; 61: 265-92.
  7. Kittaneh F. Operators that are orthogonal to the range of a derivation, J. Math. Anal. Appl. 1997;203:868-73.
  8. Okwany IO, Okelo NB,  Ongati O. Numerical radii inequalities for derivations induced by orthogonal projections. International Journal of Modern Computation, Information and Communication Technology 2021;4(3-4):7-12. 
  9. Okwany IO, Okelo NB,  Ogal EJ. Characterization of Properties of Aluthge Transforms in Banach Algebras. International Journal of Modern Computation, Information and Communication Technology 2020;3(2): 19-23. 
  10. Turnsek A. Elementary operators and orthogonality. Linear Algebra Appl. 2000; 317: 207-16.
  11. Weiss G. An extension of the Fuglede commutativity theorem modulo the Hilbert-Schmidt class to operators of the form_ . Trans. Amer. Math. Soc. 1983; 278:1-20.
  12. Yoshino T. Subnormal Operators with Cyclic Vectors. Toho. Ser. Math. 1969;21:47-55.

International Journal of Modern Science and Technology

INDEXED IN 

ISSN 2456-0235