​​​​​​​February 2020, Vol. 5, No. 2, pp. 45-58. 

​​Experimental Validation of Optimization by Statistical and CFD Simulation methods for Cellulase Production from Waste Lignocellulosic Mixture

R. Navnit kumar¹, T. R. Sambavi¹, G. Baskar², S. Renganathan¹*
¹,* Biofuel Laboratory, Center for Biotechnology, Anna University, Chennai – 600025.
²Department of Biotechnology, St. Joseph’s College of Engineering, Chennai – 600119.

​​*Corresponding author’s e-mail: srenganathan@annauniv.edu

Abstract

Cellulase production poses a challenge to the biofuel industries. In the present work, a mixture of surgical waste cotton and packaging card board was used for cellulase production, employing Trichoderma harzanium ATCC 20846. For a Submerged Fermentation (SMF), a statistical optimization was performed using Response Surface Methodology (RSM) for the following parameters: agitation, Dissolved Oxygen% (DO), aeration, viscosity, and temperature. Additionally, a Computational Fluid Dynamic (CFD) simulation was performed to study the optimum broth viscosity. A cellulase production SMF (model validation) performed using the parameter values given by the design and simulation yielded enzyme activities of: 1.85±0.1 FPU/mL; 12.4±0.2 CMCase/mL; 743±0.1 Xylanase/mL; and 3165.8±0.25 Beta-glucosidase/mL. 12% variation was seen from the predicted results. Furthermore, the biomass yield coefficients (Yx/s, Yx/O2); Oxygen Uptake Rate (OUR); maintenance coefficients (mO2x);mass transfer coefficient (KLa); Oxygen Transfer Rate (OTR); and the effects of viscosity and sugar accumulation on cellulase production were studied for the SMF.

Keywords: Statistical optimization; Biomass yield coefficient; Mass transfer coefficient; Oxygen uptake rate; Simulation.

References

  1. Xiao BY, Joo-Heon N, Hyun SY, Yun MK. Optimization of Cellulase Production in Batch Fermentation by Trichoderma resei. Biotechnol Bioprocess Eng 1998;3: 44-7.
  2. Ramesh CK, Rishi G, Ajay S. Microbial Cellulases and Their Industrial Applications. Enzyme Res 2011;2:1-10.
  3. Josef M, Maroušková A, Myšková K. Techno-economic assessment of collagen casings waste management. Int J Environ Sci Technol 2015;12:3385. https://doi.org/10.1007/s13762-015-0840-z.
  4. Hong J. Yield Coefficients for Cell Mass and Product Formation. Biochem Eng J 1998;33:506-7.
  5. Josef M, Hašková S, Zeman R. Polemics on Ethical Aspects in the Compost Business. Sci Eng Ethics 2016;22:581-90.
  6. Josef M, Myšková K, Jaroslav. Managing environmental innovation: Case study on biorefinery concept. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia 2015;38:216-20.
  7. Josef M, Maroušková A, Myšková K. Techno-economic assessment of processing the cellulose casings waste. Clean Techn Environ Policy 2015;17:2441-6. https://doi.org/10.1007/s10098-015-0941-x.
  8. Sambavi TR, Navnit kumar R, Jason C, Sahadevan R. Production of Cellulase using Trichoderma atroviride ATCC® 28043™ by Solid State Fermentation from a Novel Mixture of Coir, Vegetable and Fruit Peels. International Journal of Industrial Engineering. 2018;2(5),:119-25.
  9. Sudhanshu Behera, Ramesh, Ray. Solid State Fermentation for Production of Microbial Cellulases: Recent Advances and Improvement Strategies. Inter J Biol Macromolecules 2015;86:656-69.
  10. Abdullah. J, Greetham D, Pensupa N, Tucker GA, Du C. Optimizing Cellulase Production from Municipal Solid Waste (MSW) using Solid State Fermentation (SSF). J Fundam Renew Energ Appl 2016;6:3.
  11. Boggione M, Allasia MB, Bassani G, Farruggia B. Potential use of soybean hulls and waste paper as supports in SSF for cellulase production by Aspergillus niger. Biocatal Agri Biotech 2016;6:1-6.
  12. Aftab Ahamed, Patrick Vermette. Culture-based strategies to enhance cellulose enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem Eng 2008;40:399-407.
  13. Josef M, Kondo Y, Ueno M, Kawamitsu Y. Commercial-scale utilization of greenhouse residues. Biotechnol Appl Biochem 2013;60:253-8.
  14. Josef Maroušek, Hašková Simona, Zeman Robert, Váchal Jan, Vaníčková Radka. Nutrient Management in Processing of Steam-Exploded Lignocellulose Phytomass. Chem Eng Technolo 2014;37:1945-48.
  15. Paredes-lopez O, Camargo-rubio E, Ornelas-vale A. Influence of Specific Growth Rate on Biomass Yield, Productivity and Composition of Candida utilis in Batch and Continuous Culture. Appl Env Biotechnol 1976;31:487-91.
  16. Yi H, Percival Z, Lee Lynd R. Regulation of Cellulase Synthesis in Batch and Continuous Culture of Clostridium thermocellum. J Bacteriol 2005;187:99-106.
  17. Josef M. Economically oriented process optimization in waste management, Environ Sci Pollut Res Int 2014;21:7400-2. doi:10.1007/s11356-014-2688-z.
  18. Carl FM, Anders B. Bioprocess optimization using design of experiments methodology. Biotech Prog 2008;24:1191-1203.
  19. Prasad S, Pichiah S, Manickam M. Optimization of operating parameters using response surface methodology for adsorption of crystal violet by activated carbon prepared from mango kernel. Sustain Environ Res 2012;22:1-7.
  20. Etoc A, Delvigne F, Lecomte JP, Thonart P. Foam control in fermentation bioprocess: from simple aeration tests to bioreactor. Appl Biochem Biotechnol 2006;129:129-32.
  21. Gurunathan. B, Sahadevan. R. Design of experiments and artificial neural network linked genetic algorithm for modeling and optimization of L-asparaginase production by Aspergillus terreus MTCC 1782, Biotechnol Bioproc 2011;16:50. https://doi.org/10.1007/s12257-010-0119-7.
  22. Gurunathan. B, Sahadevan. R. Optimization of Culture Conditions and Bench-Scale Production of L Asparaginase by Submerged Fermentation of Aspergillus terreus MTCC 1782. J Microbiol Biotechnol 2012;22:923-9.
  23. Baskar. G, Aberna Ebenezer. I, Selvakumari Aiswarya. R. Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst, Bioresour Technol 2018;250:793-8.
  24. Júlio X, Heck S, Hickmann FP, Francisco HM, Antônio ZA. Statistical optimization of thermo-tolerant xylanase activity from Amazon isolated Bacillus circulans on solid-state cultivation. Bioresour Technol 2006;97:1902-6.
  25. Tijana R, Irena KV, Marko J, Biljana JS, Darko I. Comparison of Full Factorial Design, Central Composite Design, and Box-Behnken Design in Chromatographic Method Development for the Determination of Fluconazole and Its Impurities. Analyt Lett 2014;47:1334-47. DOI: 10.1080/00032719.2013.867503.
  26. Joëlle A, Catherine X. Design of Multiple Impeller Stirred Tanks for the Mixing of Highly Viscous Fluids Using CFD. Chem Eng Sci 2006;6:2913-20.
  27. Fayolle Y, Gillot S, Cockx A, Roustan M, Héduit A. In Situ Local Parameter Measurements for CFD Modeling to Optimize Aeration. Water Env Fed 2006;13:3314-26.
  28. Kumar D. Design and Scale-Up of Bioreactors Using Computer Simulations. BioProcess Int 2006:34-40.
  29. Felix GO, Gomez E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 2009;27:153-76.
  30. Navnit Kumar R, Sambavi TR, Renganathan S. Production of bioethanol by an innovative biological pre-treatment of a novel mixture of surgical waste cotton and waste card board, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2019; DOI: 10.1080/15567036.2019.1602208
  31. Navnit kumar R, Sambavi TR, Renganathan S. Production of bio-ethanol from an innovative mixture of surgical waste cotton and waste card board after ammonia pre-treatment,Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2018;40:2451-57.
  32. Nighat A, Munir Shiekh A, Muhammad A, Amer J. Expression of Trichoderma Cellulases Under Different Carbon Sources. Pak J Botany 2010;42:2895-902.
  33. Gómez Sánchez CE, Martínez-Trujillo. A, Aguilar Osorio G. Oxygen transfer coefficient and the kinetic parameters of exo-polygalacturonase production by Aspergillus flavipes FP-500 in shake flasks and bioreactor. Lett Appl Microbiol 2012; 55:444-52. doi: 10.1111/j.1472-765x.2012.03313.x.
  34. Anca-Irina G, Blaga A, Ciobanu C, Turnea M, Cascaval D. Distribution of Oxygen Transfer Rates in Stirred Bioreactor for Different Fermentation Broths - Oxygen-Vector Dispersions. Env Eng and Manage J 2015;14:433-47. DOI: 10.30638/eemj.2015.045.
  35. Michele M, André MOM, Maria de L, Teixeira de MP. Influence of volumetric oxygen transfer coefficient (kLa) on xylanases batch production by Aspergillus niger van Tieghem in stirred tank and internal-loop airlift bioreactors. Biochem Eng J 2013;80:19-26.
  36. Navnit kumar R, Sambavi TR, Sahadevan R. A study on cellulase production from a mixture of lignocellulosic wastes. Process Biochemistry. Process Biochem 2019;83:148-58.
  37. Navnit kumar R, Sambavi TR, Sahadevan R. Assessment of fed-batch strategies for enhanced Cellulase production from a waste lignocellulosic mixture. Biochem Eng J 2019;152:107387. DOI: DOI: 10.1016/j.bej.2019.107387.
  38. Ghose TK. Measurement of cellulase activities. Pure  App Chem. 1987;59:257-68. http://dx.doi.org/10.1351/pac198759020257.
  39. Jagdish S, Pawandeep K. Optimization of process parameters for cellulase production from Bacillus sp. JS14 in solid substrate fermentation using response surface methodology, Agriculture, Agribusiness and Biotechnology 2012;55:505-12.
  40. Dhaliwal M, More S. Optimization of Cellulase Production by Soil Bacteria using Statistical Design.International Journal of Innovations in Biological and Chemical Sciences 2016;9:1-7.
  41. Mani K, Ponnuswamy V, Subhanandharaj RFR, Samuel GPV. Statistical Approach for the Production of Protease and Cellulase from Bacillus cereus KA3. Bioprocess Eng 2017;1:93-103.
  42. Singh A, Shahid M, Srivastavn M, Pandey S, Sharma A. Optimal Physical Parameters for Growth of Trichoderma Species at Varying pH, Temperature and Agitation. Virol Mycol 2014;3:127. doi:10.4172/2161-0517.1000127.
  43. Panwal. J H, Viruthagiri. T, Baskar. G. Statistical modeling and optimization of enzymatic milk fat splitting by soybean lecithin using response surface methodology, International Journal of Nutrition and Metabolism 2011;3:50-7.
  44. Kyle Davidson M, Shrinivasan S, Charles Eggleton D, Mark Marten R. Using Computational Fluid Dynamics Software to Estimate Circulation Time Distributions in Bioreactors. Biotechnol Prog 2003;19:1480-6.
  45. Kumar B, Katoch A, Prasad GS, Roy Choudhury A. Understanding the Effect of Impeller Configurations on Pullulan Production by Aureobasidium Pullulans RBF 4A3. Frontiers in Bioengineering and Biotechnology 2019;7: doi:10.3389/fbioe.2019.00223. 
  46. Noordin MY, Venkatesh VC, Sharif S, Elting S, Abdullah A. Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. Journal of Materials Processing Technology 2004;145:46-58.
  47. Wang C, Liu S, Wu J, Li Z. Effects of temperature-dependent viscosity on fluid flow and heat transfer in a helical rectangular duct with a finite pitch. Brazl J Chem Eng 2014; 31:787-97.
  48. Bakri Y, Akeed Thonart P. Comparison between Continuous and Batch Processing to Produce Xylanase by Penicillium canescens 10-10c. Brazi J Chem Eng 2012; 29:441-7.
  49. Gaustav H, Mette L, Jens Frisvad C, Peter Lübeck S, Birgitte A. Production of cellulolytic enzymes from ascomycetes: Comparison of solid state and submerged fermentation. Process Biochem 2015;50:1327-41.
  50. Gómez Sánchez CE, Martínez-Trujillo A, Aguilar Osorio G. Oxygen transfer coefficient and the kinetic parameters of exo-polygalacturonase production by Aspergillus flavipes FP-500 in shake flasks and bioreactor. Lett Appl Microbiol 2012; 55:444-52.
  51. Karoline MVN, Mariana do NC, Renato GP, Flávia CMN, Rafael RA, Roberto NS. Evidence of cAMP involvement in cellobiohydrolase expression and secretion by Trichoderma reesei in presence of the inducer sophorose. BMC Microbiolo 2015; 15, 195.
  52. Tiina Pakula M, Katri S, Jaana U, Merja P. The effect of specific growth rate on protein synthesis and secretion in the filamentous fungus Trichoderma reesei. Microbio 2005;151:135-43.
  53. Bannari R, Bannari A, Vermette P, Proulx P. A model for cellulase production from Trichoderma reesei in an airlift reactor. Biotechnol Bioeng 2012;109:2025-38.

International Journal of Modern Science and Technology

INDEXED IN 

ISSN 2456-0235