INDEXED IN 

International Journal of Modern Science and Technology

​​​​​​January 2018, Vol. 3, No 1, pp 10-16. 

​​Norms of Normally Represented Elementary Operator

A. M. Wafula, N. B. Okelo, O. Ongati
School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology,
P.O. Box 210-40601, Bondo-Kenya.
​​*Corresponding author’s e-mail: bnyaare@yahoo.com

Abstract

The norm problem involves finding the formula describing the norm from the coefficients of the elementary operators. Upper estimate of the norm has been easy to find but estimating the norm from below has been proven difficult in general. In this study, we considered a special type of elementary operators called normally represented elementary operators. Some of our results show that the norm of an elementary operator is equal to the largest singular value of the operator itself i.e. Si(M) = ∥M∥ and also if UA,B = A ⊗h B + B ⊗h A is normally represented, then ∥UA,B∥Inj  ≥ 2(√(2 – 1))∥A∥∥B∥.

Keywords: Norms; Elementary operator; Normally represented elementary operator; Norm-attainable operators.

References

  1. Barraa M, Boumazgour M. A Lower bound of the norm of the operator X → AXB + BXA. Extracta Math. 2001;16:223-227.
  2. Blanco A, Boumazgour M, Ransford T. On the Norm of elementary operators. J London Math Soc. 2004;70:479-498.
  3. Cabrera M, Rodriguez A. Nondegenerately ultraprint Jordan Banach algebras. Proc London Math Soc. 1994;69:576-604.
  4. Einsiedler M, Ward T. Functional Analysis notes. Lecture notes series. 2012.
  5. Landsman NP. C*-Algebras and Quantum mechanics. Lecture notes. 1998.
  6. Mathieu M. Elementary operators on Calkin Algebras. Irish Math Soc Bull. 2001;46:33-42.
  7. Mathieu M. Elementary operators on prime C*-algebras. Irish Math Ann. 1989;284:223-244.
  8. Nyamwala FO, Agure JO. Norms of elementary operators in Banach algebras. Int J Math Anal. 2008;28:411-424.
  9. Okelo NB, Agure JO, Ambogo DO. Norms of elementary operators and characterization of Norm-Attainable operators. Int J Math Anal. 2010;4:1197-1204.
  10. Seddik A. Rank one operators and norm of elementary operators. Linear Algebra and its Applications. 2007;424:177-183.
  11. Stacho LL, Zalar B. On the norm of Jordan elementary operators in standard algebras. Publ Math Debrecen. 1996;49:127-134.
  12. Timoney RM. Norms of elementary operators. Irish Math Soc Bull. 2001;46:13-17.
  13. Vijayabalaji S, Shyamsundar G. Interval-valued intuitionistic fuzzy transition matrices. International Journal of Modern Science and Technology. 2016;1(2):47-51.
  14. Judith JO, Okelo NB, Roy K, Onyango T. Numerical Solutions of Mathematical Model on Effects of Biological Control on Cereal Aphid Population Dynamics. International Journal of Modern Science and Technology. 2016;1(4):138-143​​.
  15. Judith J O, Okelo NB, Roy K, Onyango T. Construction and Qualitative Analysis of Mathematical Model for Biological Control on Cereal Aphid Population Dynamics. International Journal of Modern Science and Technology. 2016;1(5):150-158​​.
  16. Vijayabalaji S, Sathiyaseelan N. Interval-Valued Product Fuzzy Soft Matrices and its Application in Decision Making. International Journal of Modern Science and Technology. 2016;1(7):159-163​​.
  17. Chinnadurai V, Bharathivelan K. Cubic Ideals in Near Subtraction Semigroups. International Journal of Modern Science and Technology. 2016;1(8):276-282​.
  18. Okello BO, Okelo NB, Ongati O. Characterization of Norm Inequalities for Elementary Operators. International Journal of Modern Science and Technology. 2017;2(3):81-84.

ISSN 2456-0235