ISSN 2456-0235

​​​​​International Journal of Modern Science and Technology, Vol. 2, No. 5, 2017, Pages 223-227.

 

Sub implicative ideals of KU-Algebras  

S. M. Mostafa, R. A. K Omar, O. W. Abd El- Baseer
Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt.
​​*Corresponding author’s e-mail: samymostafa@yahoo.com

Abstract
The notions of ku-sub-implicative ideals, ku-sub-commutative ideals and kp-ideals of ku-algebras are introduced. We show that a nonempty subset of a KU-algebra is a ku-sub-implicative ideal if and only if it is both a ku-sub-commutative ideal and a ku-positive implicative ideal. We discuss the relation between kp-ideal and a ku-sub-implicative ideal and a ku-sub-commutative ideal that is, in ku-algebra any kp-ideal is always ku-sub-implicative and ku-sub-commutative ideals, but the converse is not true. We give a characterization of ku-positive implicative ideals of ku-algebras. Moreover some other properties about ku-sub implicative ideals and ku-sub commutative ideals of ku-algebras are given. We give conditions for ideals to be a ku-sub-implicative ideal, ku-sub-commutative ideal and ku-positive implicative ideal. Moreover we show that any ku-sub-implicative ideal, a ku-sub-commutative ideal and kp-ideal are ideals, but the converse is not true. We verify that, in an implicative ku-algebra every ideal is a ku-sub-commutative. In the end, some algorithms for KU-algebra have been constructed.

​​Keywords: Ku-algebras; Ku-sub implicative ideals; Ku-sub-commutative; Ku-positive implicative; Kp-ideal.

References

  1. K. Iseki. On ideals in BCK-algebras. Math Sem Notes. 1975;3;1-12 
  2. K. Iseki. On BCI-algebras. Math Sem Notes. 1980;8:125-130.
  3. K. Iseki, S. Tanaka.  An introduction to the theory of BCK-algebras. Math Japon. 1978;23:1-26.
  4. Y. L. Liu, J. Meng, Y. Xu. BCI-implicative ideals of BCI-algebras. Information Sciences. 2007;Vol.No.:1-10.
  5. J. Meng, X. L. Xin. Positive implicative BCI-algebras. Pure Appl Math. 1993;9(1):19-22.
  6. Y. L. Liu, J. Meng.  Sub-implmicative ideal and sub-commutative ideal of BCI-algebra. Soochow Journal of Mathematics. 2000;26(4):441-453.
  7. J. Meng. On ideals in BCK algebras. Math Japon. 1994;40:143-154.
  8. J. Meng. An ideal Characterization of commutative BCI-algebars. Pusan Kyongnam Math J. 1993;9(1):1-6.
  9. J. Meng, X. L. Xin. Commutative BCI-algebras. Japonica. 1992;37:569-572.
  10. J. Meng, X. L. Xin. Implicative BCI-algebras. Selected papers on BCK-and    BCI-algebras. Journal Name. 1992;1:50-53.
  11. J. Meng, X. L. Xin. Positive implicative BCI-algebras. Selected papers on BCK-and    BCI-algebras. Journal Name. 1992;1:45-49.
  12.  S. M. Mostafa, M. A. Abd-Elnaby, M. M. M. Yousef. Fuzzy ideals of ku-Algebras. International Math Forum. 2011;6(63)3139-3149.
  13. S. M. Mostafa, F. F. Kareem. N-Fold Commutative ku-Algebras. International Journal of Algebra. 2014;8(6):267-275.
  14. A. E. Radwan, S. M. Mostafa, F. A. Ibrahem, F. F. Kareem. Topology spectrum of a ku-Algebra. Journal of New Theory. 2015;5(8);78-91.
  15. C. Prabpayak, U. Leerawat. On ideals and congruence in KU-algebras. Scientia Magna Journal. 2009;5(1):54-57.
  16. C. Prabpayak C, U. Leerawat. On isomorphisms of ku-algebras. Scientia Magna Journal. 2009;5(3):25-31.

International Journal of Modern Science and Technology

INDEXED IN