International Journal of Modern Science and Technology

INDEXED IN 

ISSN 2456-0235

ISSN 2456-0235

​​​​​​​​International Journal of Modern Science and Technology, Vol. 2, No. 3, 2017, Pages 105-116. 


Graphene Supported Pt–Ru–Sn Electrocatalyst for Borohydride Oxidation in Membraneless Borohydride Fuel Cell

M. Elumalai¹, M. Priya¹, S. Kiruthika², B. Muthukumaran¹,*
¹Department of Chemistry, Presidency College, Chennai – 600 005, India.

²Department of Chemical Engineering, SRM University, Chennai – 603 203, India.
*Corresponding author’s e-mail: dr.muthukumaran@yahoo.com

Abstract
Graphene supported Pt–Ru–Sn trimetallic electrocatalysts are prepared by a modified sodium borohydride reduction method in aqueous solution at room temperature, and used as the anode electrocatalysts for membraneless borohydride fuel cell. The physical and electrochemical properties of the as-prepared electrocatalysts are investigated by X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), cyclic voltammetry (CV), chronoamperometry (CA) and fuel cell test. XRD results show that the diffraction peaks in Pt–Ru–Sn/G catalysts shift slightly to lower 2θ values compared with that of Pt/G catalyst, suggesting the formation of Pt–Ru–Sn alloying. TEM results show that the morphologies of Pt–Ru–Sn trimetallic catalysts are uniformly spherical with the particle size of about 3.5 nm on the graphene surface. Besides, it has been found that the Pt–Ru–Sn catalysts have much higher catalytic activity for the oxidation of sodium borohydride than Pt/G catalyst, especially the Pt–Ru–Sn/G (60:30:10) catalyst presents the highest catalytic activity among all as-prepared catalysts. The membraneless borohydride fuel cell with Pt–Ru–Sn/G (60:30:10) anode catalyst and Pt/G cathode catalyst obtains the maximum power density as high as 39.61 mW cm─2 at room temperature. 

​​Keywords: Graphene; Electrocatalysts; Platinum; Ruthenium; Tin; Membraneless Borohydride Fuel Cell.

References

  1. Concha BM, Chatenet M. Direct Oxidation of Sodium Borohydride on Pt, Ag and Alloyed Pt-Ag Electrodes in Basic Media. Part I: Bulk Electrodes. Electrochim Acta. (2009);54(26):6119‒6129.
  2. Concha BM, Chatenet M. Direct Oxidation of Sodium Borohydride on Pt, Ag and Alloyed Pt-Ag Electrodes in Basic Media: Part II. Carbon-Supported Nanoparticles. Electrochim Acta. 2009;54(26):6130‒6139.
  3. Grimmer C, Friedrich T, Woisetschlager D, Mayer N, Kalb R, Hacker V. Novel Borohydride-Based Ionic Liquids as Hydrogen Carrier. Chemie Ing Tech. 2014;86(9):1443-1443.
  4. Grimmer C, Nestl S, Senn J, Hacker V. Selective Real-time Quantification of Hydrogen within Mixtures of Gases via an Electrochemical Method. Int J Hydrogen Energy. 2015;40(4):2055–2061.
  5. Yang H, Coutanceau C, Leger JM, Alonso-Vante N, Lamy C. Methanol tolerant oxygen reduction on carbon-supported Pt-Ni alloy nanoparticles. J Electroanal Chem. 2005;576(2):305–313.
  6. Lobato J, Ca nizares P, Rodrigo MA, Linares JJ, Lopez-Vizcaino R. Performance of a Vapor-Fed Polybenzimidazole (PBI)-Based Direct Methanol Fuel Cell. Energy Fuels. 2008;22(5):3335–3345.
  7. Hsieh CT, Lin JY. Fabrication of bimetallic Pt–M (M= Fe, Co, and Ni) nanoparticle/carbon nanotubes electrocatalysts for direct methanol fuel cells. J. Power Sources. 2009;188(2):347–352.
  8. Lobato CJ, Ca nizares P, Ubeda D, Pinar FJ, Rodrigo MA. Testing PtRu/CNF catalysts for a high temperature polybenzimidazole-based direct ethanol fuel cell. Effect of metal content. Appl Catal B: Environ. 2011;106(2):174–180.
  9. Priya M, Elumalai M, Kiruthika S, Muthukumaran B. Influences of supporting materials for Pt-Ru binary catalyst in Ethanol fuel cell, International Journal of Modern Science and Technology. 2016;1(1):5–11.
  10. John S, Dutta I, Angelopoulos AP. Enhanced Electrocatalytic Oxygen Reduction through Electrostatic Assembly of Pt Nanoparticles onto Porous Carbon Supports from SnCl2-Stabilized Suspensions. Langmuir. 2011;27(10):5781–5791.
  11. Qi J, Jiang L, Wang S, Sun G. Synthesis of graphitic mesoporous carbons with high surface areas and their applications in direct methanol fuel cells. Appl Catal B: Environ. 2011;107(2):95–103.
  12. Li Y, Tang L, Li J. Preparation and electrochemical performance of methanol oxidation of Pt/graphene Nanocomposites.  Electrochem Commun. 2009;11(4):846–849.
  13. Dong L, Gari RRS, Li Z, Craig MM, Hou S. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon. 2010;48(3):781–787.
  14. Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries, Electrochim Acta. 2010;55(12):3909–3914.
  15. Leenearts O, Partoens B, Peeters FM. Adsorption of small molecules on graphene, J Microelectr. 2009;40(5):860–862.
  16. Mahendran S, Anbuselvan C. Kinetics and mechanism of oxidation of 5-(4’-bromophenyl)-5-oxopentanoic acid by acid permanganate. International Journal of Modern Science and Technology. 2016; 3(1):106–110.
  17. Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, Yang S. Green electrochemical synthesis of Pt/Graphene sheet nanocomposite film and its electrocatalytic property. J Power Sources. 2010;195(15):4628–4633.
  18. Kim JH, Kim HS, Kang YM, Song MS, Rajendran S, Han SC, Jung DH, Lee JY. Carbon-supported and unsupported Pt anodes for direct borohydride liquid fuel cells. J Electrochem Soc. 2004;151(7): A1039-A1043.
  19. Zhenyuan J, Xiaoping S, Guoxing Z, Kangmin C, Guohua F, Lei T. Enhanced electrocatalytic performance of Pt-based nanoparticles on reduced graphene oxide for methanol oxidation. J Electroanal Chem. 2012;682:95–100.
  20. Sungyool B, Byungchul J, Seunghee W and Yuanzhe P. Enhanced electrocatalytic activity of solvothermal graphene supported PtRu catalyst toward methanol oxidation. Int J Electrochem Sci. 2013;8(6):7510–7517.
  21. Yi L, Liu L, Wang X, Liu X, Yi W, Wang X. Carbon supported Pt-Sn nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cell: Electrocatalysis and fuel cell performance. J. Power Sources. 2011;196(15):9924–9930.
  22. Radmilovic V, Gasteiger HA, Ross Jr. PN. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation. J Catal. 1995;154(1):98-106.
  23. Beyhan S, Leger JM, Kadırgan F. Pronounced synergetic effect of the nano-sized PtSnNi/C catalyst for methanol oxidation in direct methanol fuel cell J. Applied Catalysis B: Environ. 2013;130:305–313.
  24. Elumalai M and Muthukumaran B, Performance of sodium borohydride in membraneless fuel cells. International Journal of ChemTech Research. 2015;7(7):3033–3038.
  25. Elumalai M, Priya M, Kiruthika S, and Muthukumaran B, Effect of acid and alkaline media on membraneless fuel cell using sodium borohydride as fuel. AFINIDAD LXXII. 2015;572:309–313.
  26. Kalaikathir SPR, Begila David S. Synthesis and characterization of nanostructured carbon-supported Pt electrocatalysts for membraneless methanol fuel cells. International Journal of Modern Science and Technology. 2016;1(6):199–212.
  27. Vijayaramalingam K, Kiruthika S and Muthukumaran B, Promoting Effect of Third Metal (M = Ni, Mo and Rh) on Pd–Ir Binary Alloy Catalysts in Membraneless Sodium Perborate Fuel Cells, International Journal of Modern Science and Technology. 2016;3(7):257–263.
  28. Karunakaran C, Kamalam R. Mechanism and reactivity in perborate oxidation of anilines in acetic acid. J Chem Soc. Perkin Trans. 2002;2(12):2011–2018.
  29. Jayashree RS, Yoon SK, Brushett FR, Lopez-Montesinos FR, Natarajan D, Markoski LJ, Kenis PJA. On the performance of membraneless laminar flow-based fuel cells. J. Power Sources, 2010;195(11):3569–3578.
  30. Choban ER, Markoski LJ, Wieckowski A, Kenis PJA. Micro-fluidic fuel cell based on laminar flow. J Power Sources. 2004;128(1):54–60.
  31. Li H, Sun G, Cao L, Jiang L, Xin Q. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol-oxidation. Electrochim Acta. 2007;52(24):6622–6629.
  32. Shukla AK, Ravikumar MK, Roy A, Baraman SR, Sarma DD, Arico AS, Electro-oxidation of methanol in sulfuric-acid electrolyte on platized-carbon electrodes with several functional-group characteristics. J Electrochem Soc. 1994;141(6):1517–1522.
  33. Gyenge EL. Electro-oxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells. Electrochem Acta. 2004;49(6):965–978.