International Journal of Modern Science and Technology
International Journal of Modern Science and Technology, Vol. 2, No. 3, 2017, Pages 85-89.
Characterization of Numerical Ranges of Posinormal Operator
S. Asamba¹, R. K. Obogi¹, N. B. Okelo²,*
¹Department of Mathematics, Kisii University, P.O. Box 408-40200, Kisii. Kenya.
²School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210-40601, Bondo-Kenya.
*Corresponding author’s e-mail: bnyaare@yahoo.com
Abstract
Let be a complex Hilbert space equipped with the inner product ; and let be the algebra of bounded linear operators acting on. The numerical range of a bounded linear operator on a complex Hilbert space is the set The numerical radius of is given by . In this paper we investigate the numerical range of an operator acting on a complex Hilbert space. In particular, we characterize the numerical range of a posinormal operator on an infinite dimensional complex Hilbert space. The present paper shows that for a posinormal operator A, W(A) is nonempty, always and is an ellipse whose foci are the eigenvalues of A.
Keywords: Numerical range; Linear operator; Posinormal operator; Hilbert Space.
References
- Okelo B, Kisengo S. On the numerical range and spectrum of normal operators on Hilbrt spaces. The SciTech Journal of Science and Technology. 2012;1:59- 65.
- Skoufranis P. Numerical Ranges of Operators. Lecture Notes, 2012.
- Okelo B. A survey of development in operator theory on various classes of operators with applications in quantum mechanics. Global Journal of Pure and Applied Science and Technology. 2011;1:1-9.
- Gau H, Wu P. Condition for the numerical range to contain an elliptic disc. Linear Algebra Appl. 2003;364:213-222.
- Gustafson K, Rao D. Numerical range. The field of values of linear operators and matrices. Springer, New York, 1997.
- Zitn´y K, Koz´anek J. Numerical range and numerical radius (An introduction). Lecture notes, 2016.
- Bourdon P, Shapiro JH. What is the numerical range of a composition operator?, Monatshefte Math. 2000;44:65-76.
- Shapiro JH. Notes on the Numerical Range. Lecture Notes, Michigan State University, 2004.
- Halmos P. A Hilbert space problem book. Van Nostrand, Princenton, 1967.
- Rhaly H. Posinormal Operators. J Math Soc Japan. 1994;46(4)587-605.
- Vijayabalaji S, Shyamsundar G. Interval-valued intuitionistic fuzzy transition matrices. International Journal of Modern Science and Technology. 2016;1(2)47-51.
- Judith J O, Okelo NB, Roy K, Onyango T. Numerical Solutions of Mathematical Model on Effects of Biological Control on Cereal Aphid Population Dynamics, International Journal of Modern Science and Technology. 2016;1(4)138-143.
- Judith J O, Okelo NB, Roy K, Onyango T. Construction and Qualitative Analysis of Mathematical Model for Biological Control on Cereal Aphid Population Dynamics, International Journal of Modern Science and Technology. 2016;1(5)150-158.
- Vijayabalaji S, Sathiyaseelan N. Interval-Valued Product Fuzzy Soft Matrices and its Application in Decision Making, International Journal of Modern Science and Technology. 2016;1(6)159-163.
- Chinnadurai V, Bharathivelan K. Cubic Ideals in Near Subtraction Semigroups, International Journal of Modern Science and Technology. 2016;1(8)276-282.