International Journal of Modern Science and Technology
International Journal of Modern Science and Technology, Vol. 2, No. 3, 2017, Pages 81-84.
Characterization of Norm Inequalities for Elementary Operators
B. O. Okello, N. B. Okelo*, O. Ongati
School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology,
P.O Box 210-40601, Bondo-Kenya.
*Corresponding author’s e-mail: bnyaare@yahoo.com
Abstract
Studies on the norms of the elementary operators on JB*-algebras Prime C*-algebras, Calkin algebras and standard operator algebras has been considered. In this paper, we characterize norm inequalities for Jordan elementary operators on C*-algebras. The results show that if H is an infinite dimensional complex Hilbert space and B(H) the C*-algebra of all bounded linear operators on H, then for a Jordan elementary operator U : B(H) → B(H) defined by: U(T) = PTQ + QTP for all T ϵ B(H) and Pi;Qi fixed in B(H), ║U(T)║ ≤ 2║P║║Q║. Moreover, if Pi and Qi are diagonal operators induced by { ni} and {βni}respectively and H an infinite dimensional complex Hilbert space then U is bounded and║U║ = (Σn{Σli=1| ni |2| βni |2})1/2.
Keywords: Norm; C*-algebra; Elementary operator; Hilbert space.
References
- Barraa M, Boumazgour M. A Lower bound of the norm of the operator X → AXB + BXA. Extracta Math. 2001;16:223-227.
- Blanco A, Boumazgour M, Ransford T. On the Norm of elementary operators. J. London Math Soc. 2004;70:479-498.
- Cabrera M, Rodriguez A. Non-degenerately ultraprint Jordan Banach algebras. Proc London Math Soc. 1994;69:576-604.
- Einsiedler M, Ward T. Functional Analysis notes. Lecture notes series, 2012.
- Landsman NP. C*-Algebras and Quantum mechanics. Lecture notes, 1998.
- Mathieu M. Elementary operators on Calkin Algebras. Irish Math Soc Bull. 2001;46:33-42.
- Mathieu M. Elementary operators on prime C*-algebras. Irish Math Ann. 1989;284:223-244.
- Nyamwala FO, Agure JO. Norms of elementary operators in Banach algebras, Int J Math Analysis. 2008;28:411-424.
- Okelo. NB, Agure JO, Ambogo DO. Norms of elementary operators and characterization of Norm-Attainable operators. Int J Math Analysis. 2010;4:1197-1204.
- Seddik A. Rank one operators and norm of elementary operators. Linear Algebra and its Applications. 2007;424:177-183.
- Stacho LL, Zalar B. On the norm of Jordan elementary operators in standard algebras. Publ Math Debrecen. 1996;49:127-134.
- Timoney RM. Norms of elementary operators. Irish Math Soc Bull. 2001;46:13-17.
- Vijayabalaji S, Shyamsundar G. Interval-valued intuitionistic fuzzy transition matrices. International Journal of Modern Science and Technology. 2016;1(2)47-51.
- Judith J O, Okelo NB, Roy K, Onyango T. Numerical Solutions of Mathematical Model on Effects of Biological Control on Cereal Aphid Population Dynamics, International Journal of Modern Science and Technology. 2016;1(4)138-143.
- Judith J O, Okelo NB, Roy K, Onyango T. Construction and Qualitative Analysis of Mathematical Model for Biological Control on Cereal Aphid Population Dynamics, International Journal of Modern Science and Technology. 2016;1(5)150-158.
- Vijayabalaji S, Sathiyaseelan N. Interval-Valued Product Fuzzy Soft Matrices and its Application in Decision Making, International Journal of Modern Science and Technology. 2016;1(6)159-163.
- Chinnadurai V, Bharathivelan K. Cubic Ideals in Near Subtraction Semigroups, International Journal of Modern Science and Technology. 2016;1(8)276-282.