International Journal of Modern Science and Technology

INDEXED IN 

ISSN 2456-0235

​​​​​Vol. 2, No. 12, 2017, pp. 391-396. 


Evaluation of Bacillus Circulans in Imparting Aerobic Stability to Silage

A. N. Aamod, L. Sharad, P. Shilpa, K. Aarohi*
Praj Matrix Innovation Center, R & D division of Praj Industries, A/P, Pirangut, Taluka- Mulshi, Dist: Pune – 412115. India.
​​*Corresponding author’s e-mail: aarohikulkarni@praj.net

Abstract

Silage is the fermented product obtained through a process chain that starts from cutting of forage with high moisture to produce a stable feed that resists further digestion in anaerobic storage. Silage making is one of the best ways to overcome feed requirements of dairy cattle during summer seasons and drought situations occurring in India. It involves preservation of green fodder in acidic conditions due to action of native microbes and silage inoculant cultures under anaerobic conditions. A major challenge in silage is its instability upon air exposure. Fungal infestation and toxin production lead to deterioration of silage quality. Thus, research on aerobic stability enhancement and toxin reduction through use of anti-fungal agents has gained impetus. This paper explains potential of Bacillus circulans and its anti-fungal properties to protect silage during extensive use by inhibiting silage deteriorating fungi.

Keywords: Bacillus circulans; Toxin; Silage; Anti-fungal. 

References

  1. Accelerated Fodder Development Program dossier (AFDP). Ministry of agriculture, Government of India. 2011.
  2. Neres MA, Zamborn MA, Ferraz FT, Stangarlin JR, Castagnarara DD. Development of yeasts in Tifton 85 grass silage with different additives. Second International symposium on forage quality and conservation, 2008.
  3. Mannetje L't. The Future of Silage Making in the Tropics, FAO Electronic Conference on Tropical Silage, 1999.
  4. Jones LR, Buchneri L. The rest of the story. American farm products Inc.; 2017.
  5. Simpson Richard J. Bulk Precipitation of Proteins by Ammonium Sulfate. Cold Spring Harb Protoc. 2006; doi:10.1101/pdb.prot4308.
  6. State of Indian Agriculture 2012-2013. Ministry of Agriculture. Government of India.
  7. Soest PV. Nutritional Ecology of the Ruminant. Cornell University Press. 1994; p. 217.
  8. Deville J, Wong You Cheong Y, Leclezio P, Duvivier P. The production of silage from sugarcane tops and its use as fodder for cattle. Trop Anim Prod. 1979;4(2):134-137.
  9. Parker William L, Edward M, Nimeck Maxwell W, Brown William E. Polymyxin F and process of producing polymyxin F. US 4091092 A; 1978.
  10. Miller CM, Miller RV, Garton-Kenny D, Redgrave B, Sears J, Condron MM, Teplow B, Strobel GA. Ecomycins, unique antimycotics from Pseudomonas viridiflava. Journal of Applied Microbiology 1998;84:937-944.
  11. Biotal buchneri 500TM product brochure. Lallemand Animal Nutrition. CFIA Registration #983152; 2004.
  12. Adegbola A. Recent advance in bacterial silage inoculant technology. Florida Ruminant Nutrition Symposium. Best Western Gateway Grand. Gainesville. FL. 2008.
  13. Xu D, Jean-Charles C. Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3"end 16S rDNA and 5" end 16S–23S ITS nucleotide sequences, International Journal of Systematic and Evolutionary         Microbiology 2003;53:695-704.
  14. Santos EM, Da Silva TC, Carlos Macedo HO, Campos FS. Lactic acid bacteria in tropical grass silages, in Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes by Marcelino K (ed.), IN TECH, Croatia; 2013.
  15. Doyle M, Danyluk M. Bacillus circulans probiotic bacteria; US 20060034814 A1; 2006.
  16. Si-Lac extra Product brochure, making quality lucern hay using Si-Lac extraR. Technote by, Grevillia AG, Australia; 2009.
  17. Silasil energy XDR product brochure. Schaumann BioEnergy, England; 2004.
  18. Altschul Stephen F, Madden Thomas L, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI BLAST: A new generation of protein database resarch programs. Nucleic Acids Res. 1997;25:3389-3402.
  19. Dash C, Ahmed A, Nath D, Rao M. Novel Bi-functional Inhibitor of Xylanase and Aspartic Protease: Implications for Inhibition of Fungal growth. Antimicrobial agents and Chemotherapy 2011;45:2008-2017.
  20. Komotoa A, Ken-ichi H, Maenosonoa S, Wakanoa JY, Yamaguchia Y, Kenji Y. Growth dynamics of Bacillus circulans        colony. Journal of Theoretical Biology 2003;225:91-97.
  21. Ross AC, Phillip AM. Bacillus circulans based biological indicator for gaseous sterilants; WO1995006134A1; 1995.
  22. Beta galactosidase from Bacillus circulans as a processing aid, Risk and technical assessment report, Food standards Australia and New Zealand.
  23.  Munimbazi C, Bullerman LB.  Isolation and partial characterization of anti-fungal metabolites of Bacillus pumilus. J Appl Microbiol. 1998;84:959-968.
  24. Morikawa K, Hiroshi M, Isomura T, Suzuki K, Tatebayashi S. Bacillus circulans KST 202 produces             keratin suphate hydrolase. US 5968806; 1999.
  25. Vesna D, Izabela S, Olga C, Tanja B. Characterization of new Bacillus circulans strain isolated from oil shale. Food Technol Biotechnol. 2012;50(1):123-127.
  26. Parker W, Meyers E. Antibiotic mixture produced by Bacillus circulans. US4091092A; 1978.