ISSN 2456-0235

International Journal of Modern Science and Technology

INDEXED IN 

​​​​​​Vol. 2, No. 10, 2017, pp. 341-344. 


On Numerical Range of Maximal Jordan Elementary Operator   

B. O. Okello, N. B. Okelo, O. Ongati
School of Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 2010-40601, Bondo- Kenya.
​​*Corresponding author’s e-mail: bnyaare@yahoo.com

Abstract
Studies on numerical ranges such as essential numerical ranges, spatial numerical ranges, algebraic numerical ranges and maximal numerical ranges for elementary operators have been considered by different scholars. In this paper we focus on maximal numerical range for a Jordan elementary operator. The results in this paper show that if H is an infinite dimensional complex Hilbert space and B(H) the algebra of all bounded linear operators on H, then the maximal numerical range M(U) of a Jordan elementary operator is nonempty, closed and convex. Furthermore we show that the maximal numerical radius is equivalent to the norm of Jordan elementary operator but are not necessarily equal.

Keywords: Numerical range; Maximal numerical range; Numerical radius; Norm and Jordan elementary operator. 

References

  1. Barraa M, Boumazgour M. A Lower bound of the norm of the operator X → AXB +BXA. Extracta Math 2001;16:223-227.
  2. Blanco A, Boumazgour M, Ransford T. On the Norm of elementary operators.J London Math Soc 2004;70:479-498.
  3. Cabrera M, Rodriguez A.  Nondegenerately ultraprint Jordan Banach algebras. Proc London Math Soc 1994;69:576-604.
  4. Einsiedler M, Ward T. Functional Analysis notes. Lecture notes series. 2012.
  5. Landsman N P. C*-Algebras and Quantum mechanics. Lecture notes. 1998.
  6. Mathieu M. Elementary operators on Calkin Algebras. Irish Math Soc Bull 2001;46:33-42.
  7. Mathieu M. Elementary operators on prime C*-algebras. Irish Math Ann 1989;284:223-244.
  8. Nyamwala FO,  Agure JO. Norms of elementary operators in Banach algebras, Int Journal of Math Analysis 2008;28:411-424.
  9. Okelo. NB, Agure JO, Ambogo DO. Norms of elementary operators and characterization of Norm-Attainable operators. Int Journal of Math Analysis 2010;4:1197-1204.
  10. Seddik A. Rank one operators and norm of elementary operators. Linear Algebra and its Applications 2007;424:177-183.
  11. Stacho LL, Zalar B. On the norm of Jordan elementary operators in standard algebras. Publ Math Debrecen 1996;49:127-134.
  12. Timoney RM. Norms of elementary operators. Irish Math Soc Bulletin 2001;46:13-17.
  13. Vijayabalaji S, Shyamsundar G. Interval-valued intuitionistic fuzzy transition matrices. International Journal of Modern Science and Technology 2016;1(2):47-51.
  14. Judith J O,  Okelo NB, Roy K, Onyango T. Numerical Solutions of Mathematical Model on Effects of Biological Control on Cereal Aphid Population Dynamics. International Journal of Modern Science and Technology 2016;1(4):138-143​​.
  15. Judith J O,  Okelo NB, Roy K, Onyango T. Construction and Qualitative Analysis of Mathematical Model for Biological Control on Cereal Aphid Population Dynamics. International Journal of Modern Science and Technology 2016;1(5):150-158​​.
  16. Vijayabalaji S, Sathiyaseelan N. Interval-Valued Product Fuzzy Soft Matrices and its Application in Decision Making. International Journal of Modern Science and Technology 2016;1(7):159-163​​.
  17. Chinnadurai V, Bharathivelan K. Cubic Ideals in Near Subtraction Semigroups. International Journal of Modern Science and Technology 2016;1(8):276-282​​.